conditional
#special function to apply any function to multiple rows and columns at once
x<-data.frame(x1=seq(1,10,1),x2=2,x3=5)
x
# x1 x2 x3
# 1 1 2 5
# 2 2 2 5
# 3 3 2 5
# 4 4 2 5
# 5 5 2 5
# 6 6 2 5
# 7 7 2 5
# 8 8 2 5
# 9 9 2 5
# 10 10 2 5
#apply function by column
apply(x,2,mean)
# x1 x2 x3
# 5.5 2.0 5.0
#apply function by row
apply(x,1,mean)
# [1] 2.666667 3.000000 3.333333 3.666667 4.000000 4.333333 4.666667 5.000000 5.333333 5.666667
age=seq(11,20,1)
age
#[1] 11 12 13 14 15 16 17 18 19 20
m_name=letters[1:10]
m_name
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
rbind(m_name,age)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# m_name "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
# age "11" "12" "13" "14" "15" "16" "17" "18" "19" "20"
age=seq(11,20,1)
age
# [1] 11 12 13 14 15 16 17 18 19 20
m_name=letters[1:10]
m_name
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
cbind(m_name,age)
# m_name age
# [1,] "a" "11"
# [2,] "b" "12"
# [3,] "c" "13"
# [4,] "d" "14"
# [5,] "e" "15"
# [6,] "f" "16"
# [7,] "g" "17"
# [8,] "h" "18"
# [9,] "i" "19"
# [10,] "j" "20"
#read the data from the CSV available on URL
data2<-read.csv('https://vincentarelbundock.github.io/Rdatasets/csv/car/UN.csv')
data3<-na.omit(data2)
nrow(data2)
#[1] 207
nrow(data3)
#[1] 193
#### use datasets from library MASS
library('MASS')
### find frequency based on different column value
table(Cars93$Type)
# Compact Large Midsize Small Sporty Van
# 16 11 22 21 14 9
### subset data based on a column value
Cars99A<-subset(Cars93,Type=='Small')
table(Cars99A$Type)
# Compact Large Midsize Small Sporty Van
# 0 0 0 21 0 0
#
x<-c(2,1,3,5,9,8,6,7)
x
#[1] 2 1 3 5 9 8 6 7
###
sort(x)
#[1] 1 2 3 5 6 7 8 9
sort(x,decreasing = T)
#[1] 9 8 7 6 5 3 2 1
## sorting an object based a column value
Cars93[order(Cars93$Type),]
## try sorting an object based multiple column values
table(Cars93$AirBags)
#Driver & Passenger Driver only None
# 16 43 34
#tabulate for multiple variables
table(Cars93$AirBags,Cars93$Type)
# Compact Large Midsize Small Sporty Van
# Driver & Passenger 2 4 7 0 3 0
# Driver only 9 7 11 5 8 3
# None 5 0 4 16 3 6
#
sort(Cars93$Min.Price,decreasing = T)
#log transformation
library('MASS')
#Log transformation
Cars93$Min.Price
log(Cars93$Min.Price)
#square transformation
Cars93$Min.Price*Cars93$Min.Price
x<-data.frame(x1=seq(1,10,1),x2=2,x3=5)
x
# x1 x2 x3
# 1 1 2 5
# 2 2 2 5
# 3 3 2 5
# 4 4 2 5
# 5 5 2 5
# 6 6 2 5
# 7 7 2 5
# 8 8 2 5
# 9 9 2 5
# 10 10 2 5
#apply function by column
apply(x,2,mean)
# x1 x2 x3
# 5.5 2.0 5.0
#apply function by row
apply(x,1,mean)
# [1] 2.666667 3.000000 3.333333 3.666667 4.000000 4.333333 4.666667 5.000000 5.333333 5.666667
age=seq(11,20,1)
age
#[1] 11 12 13 14 15 16 17 18 19 20
m_name=letters[1:10]
m_name
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
rbind(m_name,age)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# m_name "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
# age "11" "12" "13" "14" "15" "16" "17" "18" "19" "20"
age=seq(11,20,1)
age
# [1] 11 12 13 14 15 16 17 18 19 20
m_name=letters[1:10]
m_name
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
cbind(m_name,age)
# m_name age
# [1,] "a" "11"
# [2,] "b" "12"
# [3,] "c" "13"
# [4,] "d" "14"
# [5,] "e" "15"
# [6,] "f" "16"
# [7,] "g" "17"
# [8,] "h" "18"
# [9,] "i" "19"
# [10,] "j" "20"
#read the data from the CSV available on URL
data2<-read.csv('https://vincentarelbundock.github.io/Rdatasets/csv/car/UN.csv')
data3<-na.omit(data2)
nrow(data2)
#[1] 207
nrow(data3)
#[1] 193
#### use datasets from library MASS
library('MASS')
### find frequency based on different column value
table(Cars93$Type)
# Compact Large Midsize Small Sporty Van
# 16 11 22 21 14 9
### subset data based on a column value
Cars99A<-subset(Cars93,Type=='Small')
table(Cars99A$Type)
# Compact Large Midsize Small Sporty Van
# 0 0 0 21 0 0
#
x<-c(2,1,3,5,9,8,6,7)
x
#[1] 2 1 3 5 9 8 6 7
###
sort(x)
#[1] 1 2 3 5 6 7 8 9
sort(x,decreasing = T)
#[1] 9 8 7 6 5 3 2 1
## sorting an object based a column value
Cars93[order(Cars93$Type),]
## try sorting an object based multiple column values
table(Cars93$AirBags)
#Driver & Passenger Driver only None
# 16 43 34
#tabulate for multiple variables
table(Cars93$AirBags,Cars93$Type)
# Compact Large Midsize Small Sporty Van
# Driver & Passenger 2 4 7 0 3 0
# Driver only 9 7 11 5 8 3
# None 5 0 4 16 3 6
#
sort(Cars93$Min.Price,decreasing = T)
#log transformation
library('MASS')
#Log transformation
Cars93$Min.Price
log(Cars93$Min.Price)
#square transformation
Cars93$Min.Price*Cars93$Min.Price
Comments
Post a Comment